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Abstract. The instability of fractal aggregates is discussed qualitatively using the self-con- 
sistent harmonic approximation. The density of elastic vibrational states originating from 
phonon and elastic fracton modes is used to calculate the mean square displacement of lattice 
constituents, and the transition temperature is estimated for fractal aggregates with different 
dimensionalities of elastic fractons. 

The instability of fractal aggregates is an interesting problem. Some important discus- 
sions of the thermal stability for some special fractal systems (DLA-like, etc) at finite 
temperatures have been made [ 1 ,2 ] .  In this paper, from a new viewpoint and approach 
which are based on the self-consistent harmomic approximation (SCHA) [3], we shall 
carry out a further study on the instability problem of a general fractal system with a 
nearest-neighbour interaction potential. Our discussions concern especially the occur- 
rence of the instability, the cases of different fracton dimensionalities, the cases of 
general mixed-type fractals and the fluctuation of zero temperature, all of which have 
not been discussed by others as far as \ve know. Accordingly, some new and general 
conclusions have been obtained. 

As is well known, the mean-square displacement (MSD) (U*) = Z[(u:)/Nis an impor- 
tant quantity related closely to elastic vibrational problems and the stability of long- 
range order (LRO) in the lattice. For an ordinary Debye crystal, the LRO of the lattice is 
broken down as the MSD (U’) reaches a critical value [3,4]. Similarly, the MSD (U’)* will 
increase monotonically with increasing temperature for a given fractal lattice, and it 
could be proposed that the order ofthe fractal aggregates is broken down as the threshold 
U: is reached and the corresponding temperature at the onset is called the instability 
temperature. Since there is no order on the fractal lattice at least as ( u ~ ) ~  reaches about 
a* (a is the lattice constant), the instability viewpoint for fractal aggregates is visible from 
direct physical considerations. Now, let us try to demonstrate the occurrence of the 
instability of fractal aggregates with the SCHA [3] and other appropriate approximations. 
It is reasonable to write the interaction potential for many fractal aggregates as 

VI/, = V(/RI - R, ,  1 )  (1) 
where (U’) denotes nearest neighbours and RI  is the position vector of site 1. By making 
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use of the SCHA, we can obtain a general Born potential with temperature-dependent 
coefficients. In three Euclidean dimensions, this is as follows [3,5]: 

a//, = 1 d 3q a(q) exp[i(RY - R f )  - q ]  exp (- $ ((U/ - u / , ) ~ ) )  (26) 

where RY is the original position vector of the site 1 and U, is the displacement vector of 
the site 1. (U/ - ui8)1l is the relative displacement of the site 1’ in the direction parallel to 
the bond RY - RI, ,  and (U, - u / ~ ) ~  is the relative displacement in the perpendicular 
direction. For simplicity, the isotropic case is considered in detail, i.e. CY//, = = a. 
Considering that the density of states (DOS) for elastic vibrational modes on fractals 
takes the form: p,,(o) 3~ OJ‘/-~ [6,7], where d is called the fracton dimensionality, we 
have for the DOS of pure fractals 

(3) 212 0 P d w )  = P , r ( W )  

where N, = cv/{Jd 34 a(q) exp[iq - (RY - R:)]}, and pf,(w) and pFr(u) are DOSS cor- 
responding to self-consistency and non-self-consistency, respectively. From equation 
(3), we can also easily obtain 

(u2)fr = LY,2/*(u2);, (4) 
where ( u ~ ) ~ ,  and (U’)?, are the MSDS for pure fractals corresponding to self-consistency 
and non-self-consistency, respectively. Because (u2),, is much less than a’ before the 
instability occurs (this will be demonstrated later), we neglect the specific dependence 
of various terms in the integral and the cross terms in the MSDS [3]. Now, for the bulk of 
fractal aggregates, we can simply write 

as = e~p( -2A(u~)~ , )  ( 5 )  
where a microscopic expression for A can in principle be estimated: A - ?t2/u2 [3].  In the 
above treatment, we also made use of the rough approximation within which the specific 
term in the exponent is replaced by the average value (u’)~, = Z , ( u f ) / N .  This is reason- 
able because of the qualitative nature of our discussion, and the influence of the errors 
does not cause changes in the qualitative conclusion about the occurrence of the insta- 
bility of the lattice. Solving equations ( 5 )  and (4), we find that a threshold exists: 
uf = l/Ade. Beyond the threshold, equation ( 5 )  has no solution. This means that the 
order of original fractal structure is broken down and the so-called instability occurs. 
Moreover, for mixed fractal aggregates, in which the total size and the fractal charac- 
teristic length are defined as L and E ,  respectively, the threshold is estimated to be 
between 1/3Ae and l/Ade. Similarly, the above results can be obtained for a centre-force 
potential, except that dis  different, It is also worth pointing out that the main qualitative 
conclusions can be generalised to the case CY # /3. In other words, the order of fractal 
aggregates is broken down as the MSD (u2)? reaches a certain value. Thus the equation 
for describing the transition temperature is established as 

U t  = ( U 2 ) : ( T c ) .  ( 6 )  
On the basis of equation (6), now let us discuss the instability problem in detail. As we 
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know, the usual Debye-type DOS changes to the elastic fracton DOS for length scales less 
than the characteristic length 5,  corresponding to frequencies greater than a crossover 
frequency which scales as w,, -  LO&(^+^^)/^. Here om is called the elastic fracton 
Debye frequency, which is the upper limit on the frequency region of fractons, and a, 
satisfies the relation d = 2d/(2 + a,) (d is the Hausdorff dimensionality of fractals). 
After some analysis, the numbers of fracton and phonon modes are given by 

Nfr = ~ A , ( L / E ) ~ { A ~ ( E / ~ ~  - 11 - ( E / L ) ~ I >  

Nph = n A p ( L / E ) 3 ( 1  - E / L )  
(7a)  

(7b) 
where A ,  and Af are proportionality constants depending on the structure of the fractal 
aggregates and n is the number of vibrational degrees of freedom. According to the 
normalisation condition, we have 

where coo - wfD(E/u) - 'e/2(L/u)-1,  By using equations (8), the MSD can be calculated, 
i.e. 

(U'): = + U i h  (9) 
with 

utr = U; 

(10) 

w d - l  - w d - l  w t ~  w d - 2  d w  Nfr d fD CO 

i- 1 exp(hw/kT) - 1 

w d w  

- 
3nojG1[1 - (E/u)- ']  ( 2(d - 1) w CO 

1 - 1 

where U; = 3nh/mwfD and N is the total number of sites. It is convenient to introduce 
the new parameters Tf = TDc~f/~&, and y ,  = uf/u;,  where U&, and T,, are the critical 
MSD and the melting transition temperature of a Debye crystal with the same material 
parameters as those of the fractals. In the ordinarycase, we have kTD, 9 hw,; this implies 
the inequality y f  9 1. In the following, we shall calculate the instability temperature of 
fractal ordering in different cases. 

(i) Whend > 2,forpurefractalaggregates(E = L),fromequations(6), (9) and(10), 
we have 

d d w 
= Y f .  6(d - 1) exp(-hw/kT) - 1 

From equation (ll), it is known that kT, 9 hw,,. On comparison with the second term, 
the first term on the left-hand side can be neglected. By evaluating the second term 
approximately, the instability temperature is given by 

T, - [3(d - 2 ) / 4  T f .  (12) 
Since the transition point of fractal ordering is independent of the size, the LRO may exist 
below T, in this case, just as for a Debye lattice. For mixed fractal aggregates, the same 
result can be obtained in a similar way. Accordingly, we may view T, as the melting point 
of a fractal lattice. 
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(ii) When d = 2. by using a similar evaluation procedure as above, the equation 
determining the instability temperature T, is written as 

(kT,/h'JJfD){(1 - E/L)/Af ( d / 3 )  ln(g/a) -t 3 In(kT,/fiwf~) 

- exp(-hwfD/kTc)]> = Yf. (13) 

The solution of this equation for T, will be a decreasing function of E ,  Consequently, 
there is no LRO on this type of fractal aggregate. It can be seen easily that T, - [3 /d  In(E/ 
a) ]  Tf as ,t approaches infinity, just as in two-dimensional crystal lattice, which means 
there exists quasi-LRo on this type of fractal. Also, T, is not very small so long as E is not 
much larger than the ordinary macroscopic scale (about (10*-10'))a). Here we should 
note that the results obtained in cases (i) and (ii) seem to be unable to be obtained in 
previous work [ 1, 21. 

(iii) We now consider when 1 < d < 2. Before continuing our discussion, we shall 
comment briefly on the fracton dimensions. According to equation (11), the necessary 
condition for which the equation of T, has a real solution is 

yf - [d /6 (d  - 1)][1 - (E/a)- '( ' - ' ); ']  2 0. (14) 
In order for the inequality to remain valid for any large E ,  including the case T, = 0. we 
must have 

d 3 (1 - 1 / 6 ~ & '  = d, 1. (15) 

The same result still holds in the mixed case E # L. It also can be seen that the above 
result is unable to be derived in [l, 21. As we discuss only the case in which d is not close 
to unity, the second term on the left-hand side of equation (11) will play an important 
role. After some analysis, the instability temperature of fractal ordering is obtained 
approximately: 

T, - fi.~~fD(E/a)-~'(~-''' '[yf - d /6 (d  - l)]/k[(l - g /L) /A ,  + d /3 (2  - d ) ] .  (16) 

It is clear that neither LRO nor quasi-LRO exists on fractal aggregates in this case. In 
general, T, will be extremely low due to the smallness of the factor ( E / U ) - ~ ( ~ - ' ) / ~  except 
for when 2 is relatively small or is very close to 2. This agrees with work in [2], which can 
give support for our work from another aspect. 

(iv) Finally, we consider the case when d 6 1. In the d = 1 case, because of the 
contribution from the first term on the left-hand side of equation (11), ,t cannot assume 
arbitrary large values even at absolute zero temperature. The upper limit of Zj is given 
by 

Ec(0)  = a exP(6Yfld). (17) 

T, - fi%") 3 Y f  - (m ln(E/4/k[(1 - E/L) /Af  + 51. 

Thus, inamacroscopicfractal system, the linear size ofwhich isabout 1OXa, theconditions 
E 4 Zj,(O) and hm,, 4 kT, can be satisfied simultaneously. After calculation, we obtain 

(18) 

Consequently, since T, decreases seriously with increasing E ,  the fractal order cannot be 
maintainedfor a system at ordinarylow temperatures. In thed < 1 case, the conclusion is 
similar to the above case except that T, decreases much more rapidly than earlier. 

order. Moreover, several new important and interesting results have been obtained. 
In conclusion, we have developed an approximate theory for the instability of fractal 
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(i) In the d > 2 case, the onset temperature T, for breaking of fractal order is 
independent of the characteristic length E .  Thus, physically, T, may be viewed as the 
melting temperature of fractal aggregates, just as for a three-dimensional Debye lattice. 

(ii) In the 2 = 2 case, because of the asymptotically logarithmic dependence of T, on 
E ,  there is only quasi-LRo, and fractal aggregates on a macroscopic scale (about (lo8- 
109)a) may exist at low temperatures. 

(iii) For d G 1, even at zero temperature, the characteristic length E cannot be large. 
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